11 research outputs found

    Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Get PDF
    This chapter addressed the challenges encountered by a GNSS signal due to multipath propagation. A wide range of correlation-based multipath mitigation techniques were discussed and the performance of some of these techniques were evaluated in terms of running average error and root-mean-square error. Among the analyzed multipath mitigation techniques, RSSML, in general, achieved the best multipath mitigation performance in moderate-to-high C/N0 scenarios (for example, 30 dB-Hz and onwards). The other techniques, such as PT(Diff2) and HRC showed good multipath mitigation performance only in high C/N0 scenarios (for example, 40 dB-Hz and onwards). The other new technique SBME offered slightly better multipath mitigation performance to the well-known nEML DLL at the cost of an additional correlator. However, as the GNSS research area is fast evolving with many potential applications, it remains a challenging topic for future research to investigate the feasibility of these multipath mitigation techniques with the multitude of signal modulations, spreading codes, and spectrum placements that are (or are to be) proposed.publishedVersionPeer reviewe

    Advanced Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Get PDF
    Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS) or the future European satellite navigation system Galileo. Multipath is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function used for time delay estimation. However, some wireless communications techniques exploit multipath in order to provide signal diversity though in GNSS, the major challenge is to effectively mitigate the multipath, since we are interested only in the satellite-receiver transit time offset of the Line-Of-Sight (LOS) signal for the receiver's position estimate. Therefore, the multipath problem has been approached from several directions in order to mitigate the impact of multipath on navigation receivers, including the development of novel signal processing techniques. In this paper, we propose a maximum likelihood-based technique, namely, the Reduced Search Space Maximum Likelihood (RSSML) delay estimator, which is capable of mitigating the multipath effects reasonably well at the expense of increased complexity. The proposed RSSML attempts to compensate the multipath error contribution by performing a nonlinear curve fit on the input correlation function, which finds a perfect match from a set of ideal reference correlation functions with certain amplitude(s), phase(s), and delay(s) of the multipath signal. It also incorporates a threshold-based peak detection method, which eventually reduces the code-delay search space significantly. However, the downfall of RSSML is the memory requirement which it uses to store the reference correlation functions. The multipath performance of other delay-tracking methods previously studied for Binary Phase Shift Keying-(BPSK-) and Sine Binary Offset Carrier- (SinBOC-) modulated signals is also analyzed in closed loop model with the new Composite BOC (CBOC) modulation chosen for Galileo E1 signal. The simulation results show that the RSSML achieves the best multipath mitigation performance in a uniformly distributed two-to-four paths Rayleigh fading channel model for all three modulated signals

    Impact Analysis of Standardized GNSS Receiver Testing against Real-World Interferences Detected at Live Monitoring Sites

    Get PDF
    GNSS-based applications are susceptible to different threats, including radio frequency interference. Ensuring that the new applications can be validated against the latest threats supports the wider adoption and success of GNSS in higher value markets. Therefore, the availability of standardized GNSS receiver testing procedures is central to developing the next generation of receiver technologies. The EU Horizon2020 research project STRIKE3 (Standardization of GNSS Threat reporting and Receiver testing through International Knowledge Exchange, Experimentation and Exploitation) proposed standardized test procedures to validate different categories of receivers against real-world interferences, detected at different monitoring sites. This paper describes the recorded interference signatures, their use in standardized test procedures, and analyzes the result for two categories of receivers, namely mass-market and professional grade. The result analysis in terms of well-defined receiver key performance indicators showed that performance of both receiver categories was degraded by the selected interference threats, although there was considerable difference in degree and nature of their impact

    Code Tracking Algorithms for Mitigating Multipath Effects in Fading Channels for Satellite-Based Positioning

    Get PDF
    The ever-increasing public interest in location and positioning services has originated a demand for higher performance global navigation satellite systems (GNSSs). In order to achieve this incremental performance, the estimation of line-of-sight (LOS) delay with high accuracy is a prerequisite for all GNSSs. The delay lock loops (DLLs) and their enhanced variants (i.e., feedback code tracking loops) are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the binary offset carrier (BOC) modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this paper analyzes feedback as well as feedforward code tracking algorithms and proposes the peak tracking (PT) methods, which are combinations of both feedback and feedforward structures and utilize the inherent advantages of both structures. We propose and analyze here two variants of PT algorithm: PT with second-order differentiation (Diff2), and PT with Teager Kaiser (TK) operator, which will be denoted herein as PT(Diff2) and PT(TK), respectively. In addition to the proposal of the PT methods, the authors propose also an improved early-late-slope (IELS) multipath elimination technique which is shown to provide very good mean-time-to-lose-lock (MTLL) performance. An implementation of a noncoherent multipath estimating delay locked loop (MEDLL) structure is also presented. We also incorporate here an extensive review of the existing feedback and feedforward delay estimation algorithms for direct sequence code division multiple access (DS-CDMA) signals in satellite fading channels, by taking into account the impact of binary phase shift keying (BPSK) as well as the newly proposed BOC modulation, more specifically, sine-BOC(1,1) (SinBOC(1,1)), selected for Galileo open service (OS) signal. The state-of-art algorithms are compared, via simulations, with the proposed algorithms. The main focus in the performance comparison of the algorithms is on the closely spaced multipath scenario, since this situation is the most challenging for estimating LOS component with high accuracy in positioning applications

    Combating Single-Frequency Jamming through a Multi-Frequency, Multi-Constellation Software Receiver: A Case Study for Maritime Navigation in the Gulf of Finland

    Get PDF
    Today, a substantial portion of global trade is carried by sea. Consequently, the reliance on Global Navigation Satellite System (GNSS)-based navigation in the oceans and inland waterways has been rapidly growing. GNSS is vulnerable to various radio frequency interference. The objective of this research is to propose a resilient Multi-Frequency, Multi-Constellation (MFMC) receiver in the context of maritime navigation to identify any GNSS signal jamming incident and switch to a jamming-free signal immediately. With that goal in mind, the authors implemented a jamming event detector that can identify the start, end, and total duration of the detected jamming event on any of the impacted GNSS signal(s). By utilizing a jamming event detector, the proposed resilient MFMC receiver indeed provides a seamless positioning solution in the event of single-frequency jamming on either the lower or upper L-band. In addition, this manuscript also contains positioning performance analysis of GPS-L5-only, Galileo-E5a-only, and Galileo-E5b-only signals and their multiGNSS combinations in a maritime operational environment in the Gulf of Finland. The positioning performance of lower L-band GNSS signals in a maritime environment has not been thoroughly investigated as per the authors’ knowledge

    Reliability testing for multiple GNSS measurement outlier detection

    No full text
    Due to a rapid development of several Global Navigation Satellite Systems (GNSS), multiple constellations are available to enhance navigation performance and safety. With the growing number of satellite constellations, the task of the GNSS navigation is to deal with the differences among systems but, on the other hand, more great levels of integrity and satellite visibility can be expected. GNSS navigation applications have difficulties in signal degraded scenarios where the GNSS solution can be degraded by errors such as multipath and signals being obscured. RAIM (Receiver Autonomous Integrity Monitoring) is a method necessary for assessing integrity performance levels mainly in safety-critical applications. Classical RAIM techniques are based on the assumption model of a single outlier in the measurements, but with a future of higher satellite availability and for navigation conducted in urban canyon scenarios, the single outlier assumption is unrealistic. Therefore, reliability monitoring techniques need to be modified to be suitable for use cases with high signal degradation levels. The FDE (Fault Detection and Exclusion) schemes analysed in this research for reliability monitoring are the Observation Subset Testing and a modified approach based on a w-test (called in this paper Multiple Faults De-weighting-MFD). In order to improve their performance a novel Channel Quality Index (CQI) parameter was used to describe the measurement confidence and quality. To validate the proposed approaches, tests have been performed using simulated data with GPS, Galileo and BeiDou signals in a multipath environment

    Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    No full text
    Multipath is undesirable for Global Navigation Satellite System (GNSS) receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS) path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Mobile Satellite (LMS) channel model [1]-[4], developed at the German Aerospace Center (DLR). The DLR LMS channel model is widely used for simulating the positioning accuracy of mobile satellite navigation receivers in urban outdoor scenarios. The main objective of this paper is to present a comprehensive analysis of some of the most promising techniques with the DLR LMS channel model in varying multipath scenarios. Four multipath mitigation techniques are chosen herein for performance comparison, namely, the narrow Early-Minus-Late (nEML), the High Resolution Correlator, the C/N0-based two stage delay tracking technique, and the Reduced Search Space Maximum Likelihood (RSSML) delay estimator. The first two techniques are the most popular and traditional ones used in nowadays GNSS receivers, whereas the later two techniques are comparatively new and are advanced techniques, recently proposed by the authors. In addition, the implementation of the RSSML is optimized here for a narrow-bandwidth receiver configuration in the sense that it now requires a significantly less number of correlators and memory than its original implementation. The simulation results show that the reduced-complexity RSSML achieves the best multipath mitigation performance in moderate-to-good carrier-to-noise density ratio with the DLR LMS channel model in varying multipath scenarios

    A new implementation of narrowband interference detection, characterization, and mitigation technique for a software-defined multi-GNSS receiver

    Get PDF
    Due to the very low power of satellite signals when reaching the earth’s surface, global navigation satellite system receivers are vulnerable to various types of radio frequency interference, and, therefore, countermeasures are necessary. In the case of a narrowband interference (NBI), the adaptive notch filtering technique has been extensively investigated. However, the research on the topic has focused on the adaptation of the notch frequen-cy, but not of the notch width. We present a fully adaptive solution to counter NBI. The technique is capable of de-tecting and characterizing any number of narrow inter-fered bands, and then optimizing the mitigation process based on such characterization, namely the estimates of both interference frequency and width. Its full adaptive-ness makes it suitable to cope with the unpredictable and diverse nature of unintentional interfering events. In addi-tion to a thorough performance evaluation of the pro-posed method, which shows its benefits in terms of sig-nal quality improvement, an analysis of the impact of different NBI profiles on GPS L1 C/A and Galileo E1 is also conducted
    corecore